

삼성 오픈소스 컨퍼런스 SAMSUNG OPEN SOURCE CONFERENCE

OPEN YOUR UNIVERSE WITH SOSCON

Extending Spark Streaming to Support Complex Event Processing

소속 삼성전자 이름 김병진, 권오찬

2015. 10. 27.

Agenda

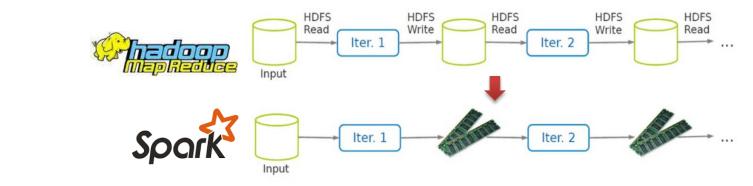
삼성 오픈소스 컨퍼런스 SAMSUNG OPEN SOURCE CONFERENCE

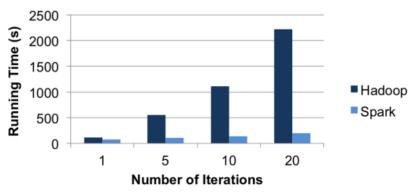
- Background
- Motivation
- Streaming SQL
- Auto Scaling
- Future Work

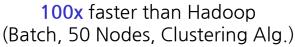
*RDD: Resilient Distributed Datasets

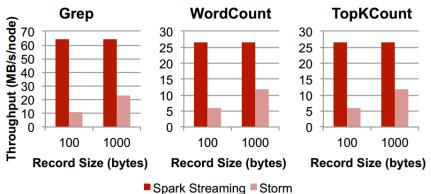
Apache Spark is a high performance data processing platform

- Use a distributed memory cache (RDD*)
- Process batch and stream data in the common platform
- Be developed by 700+ contributors







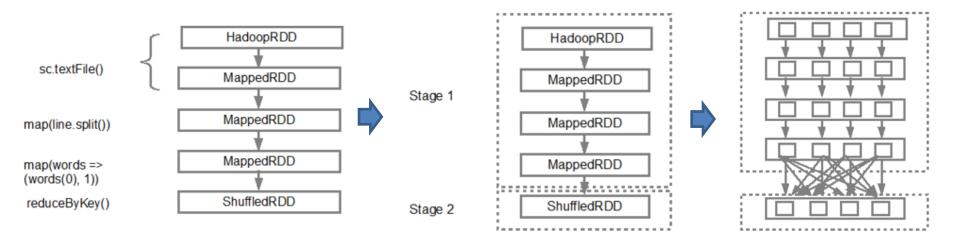


3x faster than Storm (Stream, 30 Nodes)

Background - Spark RDD

Resilient Distributed Datasets

- RDDs are immutable
- Transformations are lazy operations which build a RDD's lineage graph
 - E.g.: map, filter, join, union
- Actions launch a computation to return a value or write data
 - E.g.: count, collect, reduce, save
- The scheduler builds a DAG of stages to execute
- If a task fails, spark re-runs it on another node as long as its stage's parent are still available



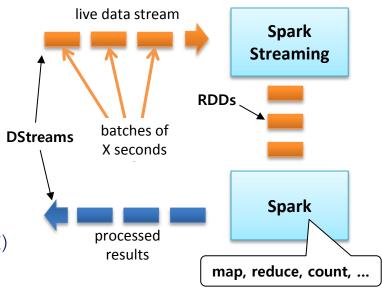
Background - Spark Modules

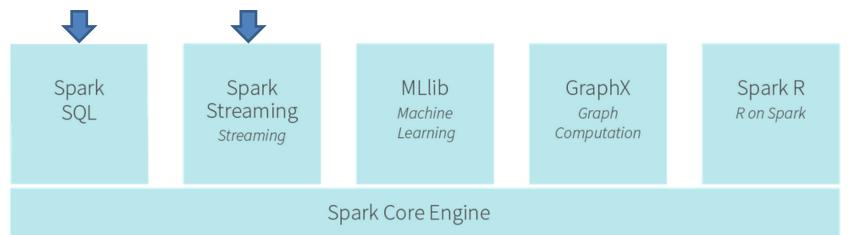
Spark Streaming

- Divide stream data into micro-batches
- Compute the batches with fault tolerance

Spark SQL

- Support SQL to handle structured data
- Provide a common way to access a variety of data sources (Hive, Avro, Parquet, ORC, JSON, and JDBC)





Motivation - Support CEP in Spark

*Complex Event Processing

- Current spark is not enough to support CEP*
 - Do not support continuous query language to process stream data
 - Do not support auto-scaling to elastically allocate resources

We have solved the issues:

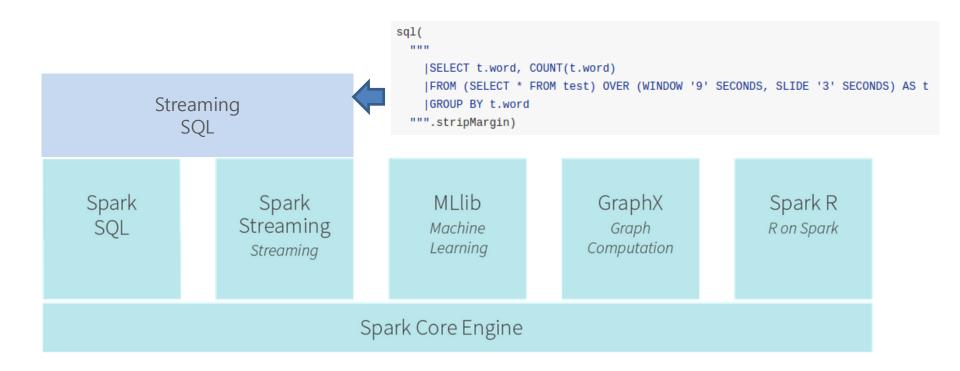
- Extend Intel's Streaming SQL package
 - Improve performance by optimizing time-based windowed aggregation
 - Support query chains by implementing "Insert Into" queries
- Implement elastic-seamless resource allocation
 - Can do auto-scale in/out

Streaming SQL

http://spark-packages.org/package/Intel-bigdata/spark-streamingsql

Streaming SQL is a third party library of Spark Packages

- Build on top of Spark Streaming and Spark SQL Catalyst
- Manipulate stream data like static structured data in database
- Process queries continuously
- Support time based windowing join/aggregation gueries



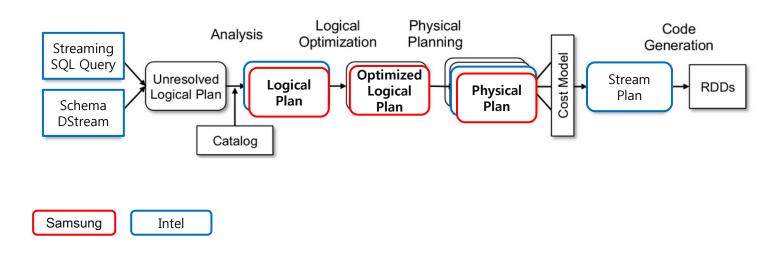
Streaming SQL - Plans

Logical Plan

- Modify streaming SQL optimizer
- Add windowed aggregate logical plan

Physical Plan

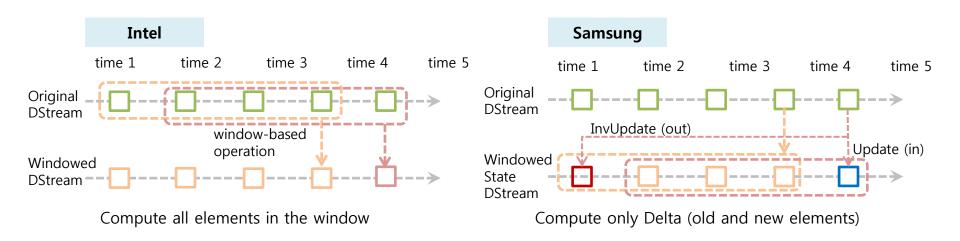
- Add windowed aggregate physical plan to call new WindowedStateDStream class
- Implement new expression functions (Count, Sum, Average, Min, Max, Distinct)
- Develop **FixedSizedAggregator** for efficiency which is the concept of IBM InfoSphere Streams



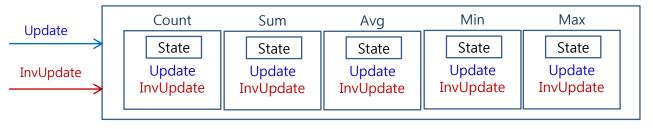
Streaming SQL - Windowed State

WindowedStateDStream class

- Modify StateDStream class to support windowed computing
- Add inverse update function to evaluate old values
- Add filter function to remove obsolete keys



State: Array[AggregateFunction]



Streaming SQL - Fixed Sized Aggregator

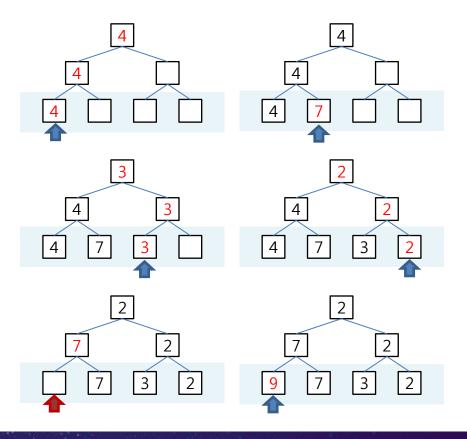
*K. Tangwongsan, M. Hirzel, S. Schneider, K-L. Wu, "General incremental sliding-window aggregation," In VLDB, 2015.

Fixed-Sized Aggregator* of IBM InfoSphere Streams

- Use fixed sized binary tree
- Maintain leaf nodes as a circular buffer using front and back pointers
- Very efficient for non-invertable expressions (e.g. Min, Max)

Example - Min Aggregator

Event	Window's Contents	FlatFAT's Slots		
		a[1] $a[2]$	a[3]	a[4]
1) 4 arrives	4	F ₄ B _		
2) 7 arrives	4,7	\mathbb{E}_4 7	B	\perp
3) 3 arrives	4, 7, 3	E ₄ 7	3 ^B	\perp
4) 2 arrives	4, 7, 3, 2	E ₄ 7	3	2^{B}
5) 4 leaves	7, 3, 2	⊥ E 7	3	2^{B}
6) 9 arrives	7, 3, 2, 9	9 B F 7	3	2



Streaming SQL - Aggregate Functions

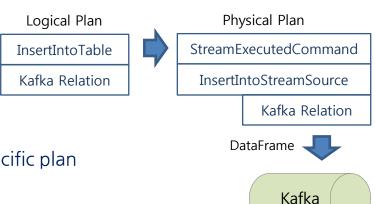
Windowed Aggregate Functions

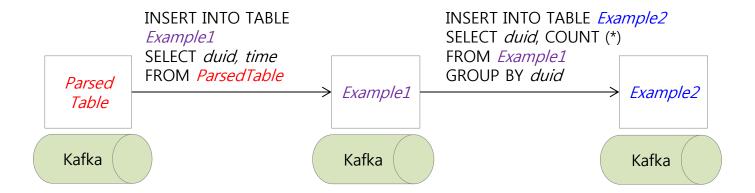
- Add invUpdate function
- Reduce objects for efficient serialization
- Implement Fixed-Sized Aggregator for Min, Max functions

Aggregate Functions	State	Update	InvUpdate
Count	countValue: Long	Increase countValue	Decrease countValue
Sum	sumValue: Any	Add to sumValue	Subtract to sumValue
Average	sumValue: Any countValue: Long	Increase countValue Add to sumValue	Decrease countValue Subtract to sumValue
Min	fat: FixedSizedAggregator	Insert minimum to fat	Remove the oldest from fat
Max	fat: FixedSizedAggregator	Insert maximum to fat	Remove the oldest from fat
CountDistinct	distinctMap: mutable.HashMap[Row, Long]	Increase count of distinct value in map	Decrease count of distinct value in map

Streaming SQL - Insert Into

- Support "Insert Into" query
 - Implement Data Sources API
 - Implement the insert function in Kafka relation
 - Modified some physical plans to support streaming
 - Modified physical planning strategies to assign a specific plan
 - Convert current RDD to a DataFrame and then insert it
 - Support query chaining
 - → The result a query can be reused by multiple queries





Streaming SQL - Evaluation

Experimental Environment

Processing Node: Intel i5 2.67GHz, 4 Cores, 4GB per node

Spark Cluster: 7 Nodes

Kafka Cluster: 3 Nodes

Test Query:

SELECT t.word, COUNT(t.word), SUM(t.num), AVG(t.num), MIN(t.num), MAX(t.num) FROM (SELECT * FROM t_kafka) OVER (WINDOW 'x' SECONDS, SLIDE '1' SECONDS) AS t GROUP BY t.word

Default Set:

100 EPS, 100 Keys, 20 sec Window, 1 sec Slide, 10 Executors, 10 Reducers

Test Agent

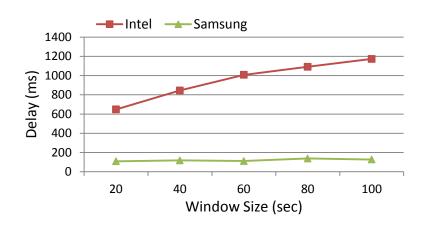
Kafka Cluster

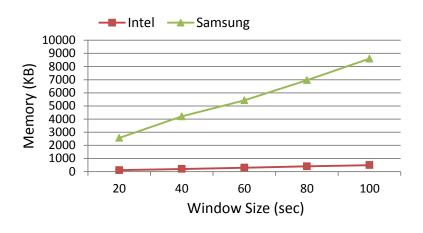
Spark Cluster

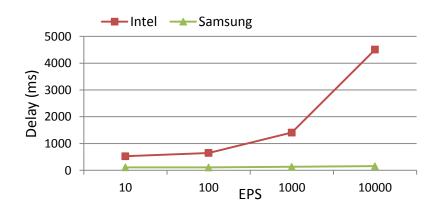
Spark UI

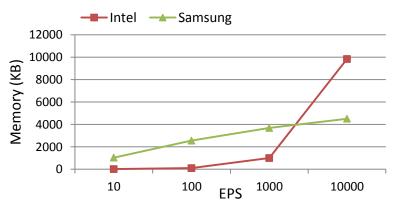
Test Result

- Show low processing delays despite of heavy event loads or large-sized windows
- Need memory optimization





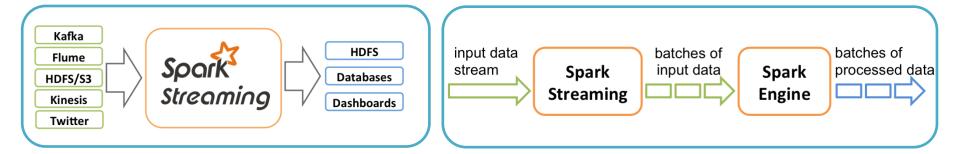




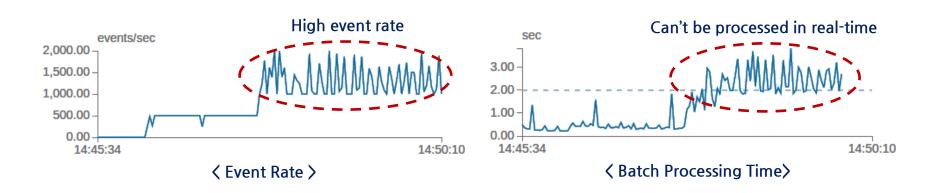
Auto Scaling

Time-varying Event Rate in Real World

- Spark Streaming
 - Data can be ingested from many sources like Kafka, Flume, Twitter, etc.
 - Live input data streams are divided into batches, and they are processed

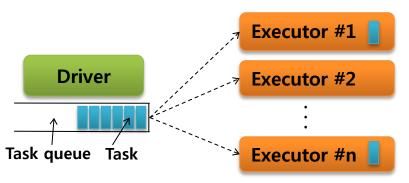


- In streaming application, event rate may change frequently over time
- How can this be dealt with?



Spark AS-IS

• Spark currently supports dynamic resource allocation on Yarn (SPARK-3174) and coarse-grained Mesos (SPARK-6287)



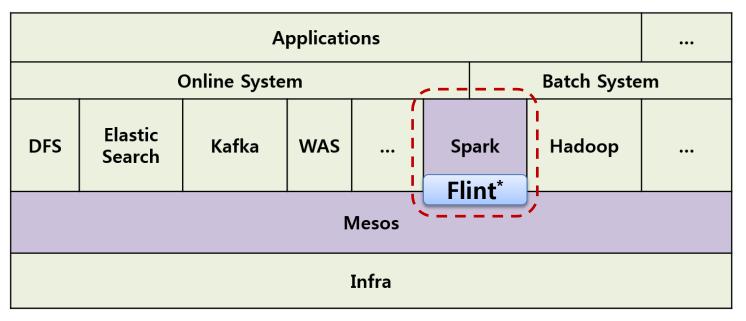
- Upper/lower bound for the number of executors
 - spark.dynamicAllocation.minExecutors
 - spark.dynamicAllocation.maxExecutors
- Scale-out condition
 - schedulerBacklogTimeout < staying time of a task in task queue
- Scale-in condition
 - executorIdleTimeout < staying time of an executor in idle state
- Existing Dynamic Resource Allocation is not optimized for streaming
 - Even though event rate becomes smaller, executors may not be removed due to scheduling policy
- It is difficult to determine appropriate configuration parameters
- Backpressure (SPARK-7398)
 - Enable the Spark streaming to control the receiving rate dynamically for handling bursty input streams
 - Not real-time

Elastic-seamless Resource Allocation

Goal

- Allocate resources to streaming applications dynamically as the rate of incoming events varies over time
- Enable the applications to meet real-time deadlines
- Utilize the resource efficiently

Cloud Architecture



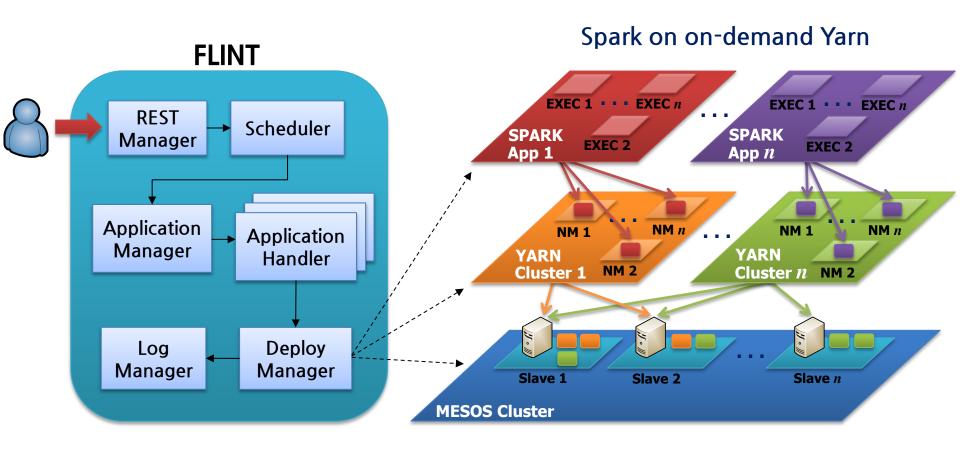
*Flint: our spark job manager

Spark Deployment Architecture

- Spark currently supports three cluster managers
 - Standalone, Apache Mesos, Hadoop Yarn

Spark on Mesos

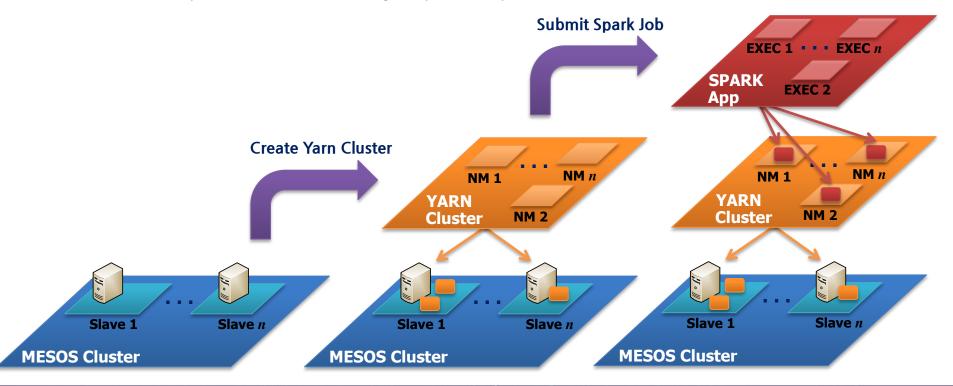
- Fine-grained mode
 - Each Spark task runs as a separate Mesos task.
 - Launching overhead is big, so it is not suitable for streaming.
- Coarse-grained mode
 - Launch only one long-running Spark task on each Mesos machine
 - Cannot scale-out more than the number of Mesos machines
 - Cannot control executor resource
 - Only available for total resource
- Both of two modes have some problems to achieve our goal



Marathon, Zookeeper, ETCD, HDFS

Job submission process

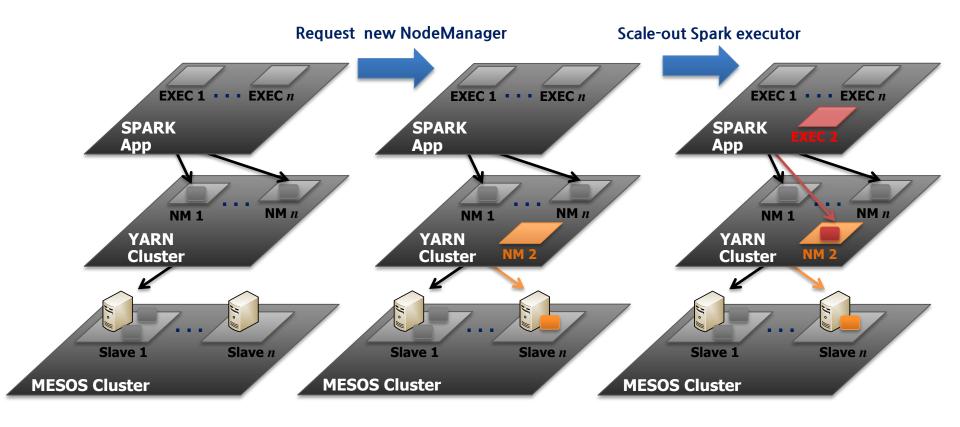
- 1. Request to deploy dockerized YARN via Marathon
- 2. Launch ResourceManager, NodeManagers for Spark driver/executors
- 3. Check ResourceManager status
- 4. Submit Spark Job and check Job status
- 5. Watch Spark driver status and get Spark endpoint



Flint Architecture: Scale-out

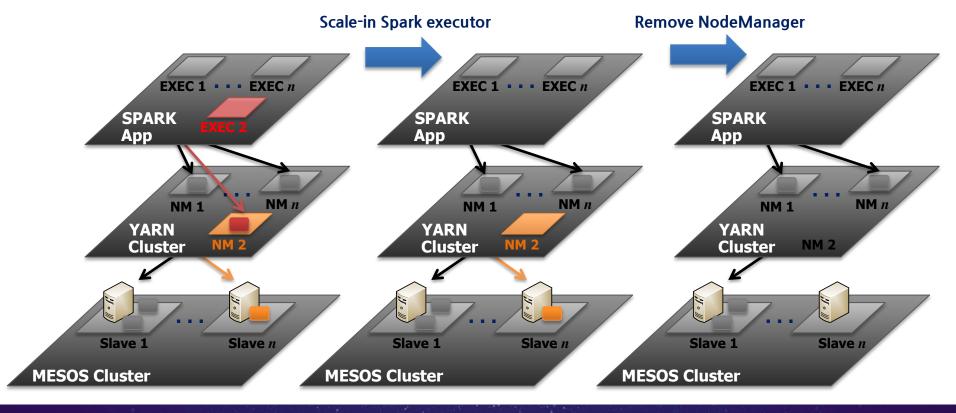
Scale-out Process

- 1. Request to increase the instance of NodeManager via Marathon
- 2. Launch new NodeManager
- 3. Scale-out Spark executor



Scale-in Process

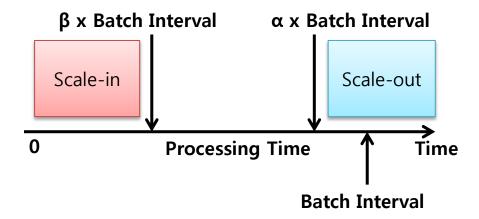
- Get Executor's info and select spark victims
- 2. Inactivate spark victims and kill them after $n \times n$ batch interval
- 3. Get Yarn victims and decommission NodeManager via ResourceManager
- 4. Get mesos task id of Yarn victims and kill mesos tasks of victims



Auto-scaling Mechanism

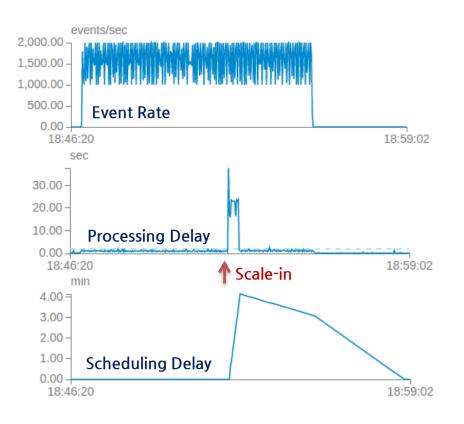
- Real-time constraint
 - Batch processing time < Batch interval

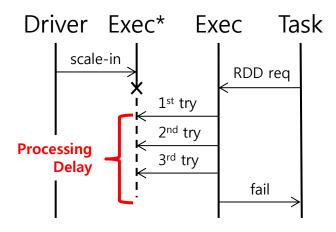
- Scale-out condition
 - α x batch interval < batch processing delay
- Scale-in condition
 - β x batch interval \rangle batch processing delay (0 $\langle \beta \langle \alpha \leq 1 \rangle$



Timeout & Retry for Killed Executor

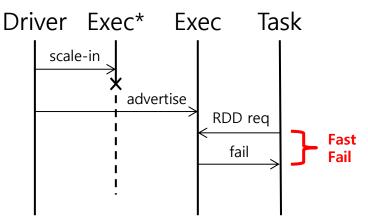
Although Spark executor is killed by admin, Spark re-tries to connect it.





- spark.shuffle.io.maxRetries = 3
- spark.shuffle.io.retryWait = 5s

- Timeout & Retry for Killed Executor
 - Advertisement for killed executor

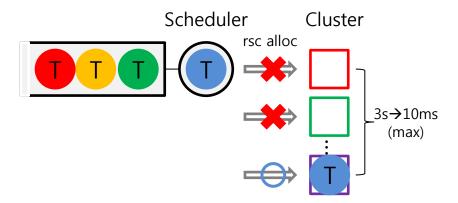


- Inactivate executor before scale-in
 - Inactivate executor and kill them after n x batch interval
 - During inactivating stage, the executor does not receive any task from driver.

Spark Issues: Scale-in (3/3)

Data Locality

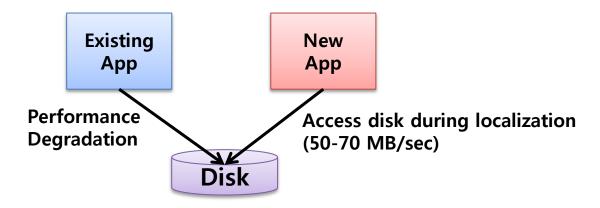
- Spark scheduler consider data locality
 - Processing/Node/Rack locality
 - spark.locality.wait = 3s
- However, waiting time for locality is big burden to streaming applications
 - The waiting time should be much less than batch interval for streaming
 - Otherwise, streaming may not be processed in real-time
- Thus, Flint overrides "spark.locality.wait" to very small value if application type is streaming



Spark Issues: Scale-out (1/2)

Data Localization

- During scale-out process, new Yarn container performs to localize some data (e.g. spark jar, application jar)
- Data localization incurs high disk I/O, so

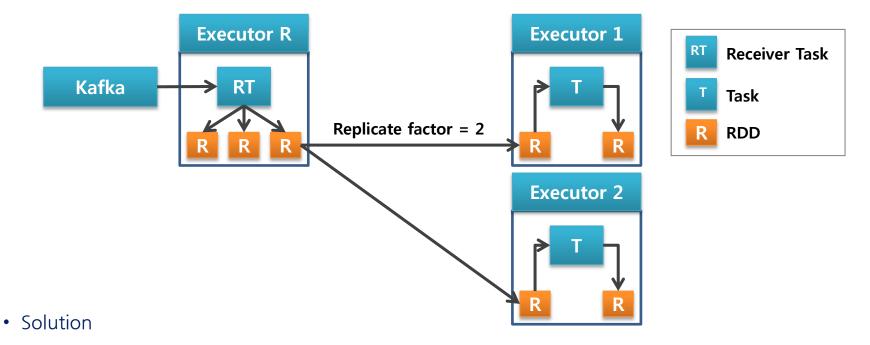


- Solution
 - Prefetch if possible
 - Disk isolation, SSD

Spark Issues: Scale-out (2/2)

RDD Replication

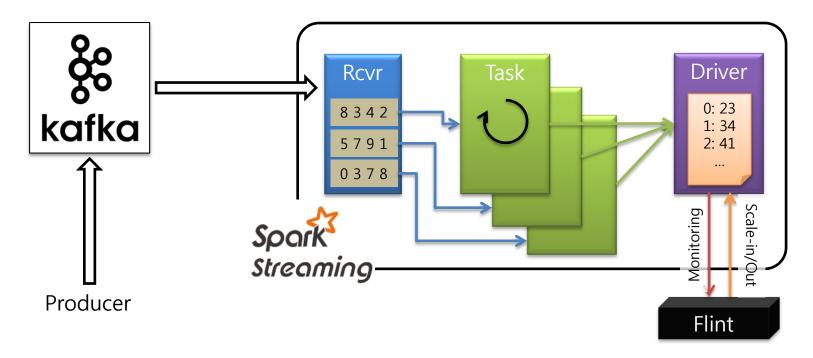
- When a new executor is added, a receiver requests to replicate received RDD blocks to the executor
- New executor does not ready to receive RDD blocks during an initialization
- At this situation, the receiver waits until new executor is ready

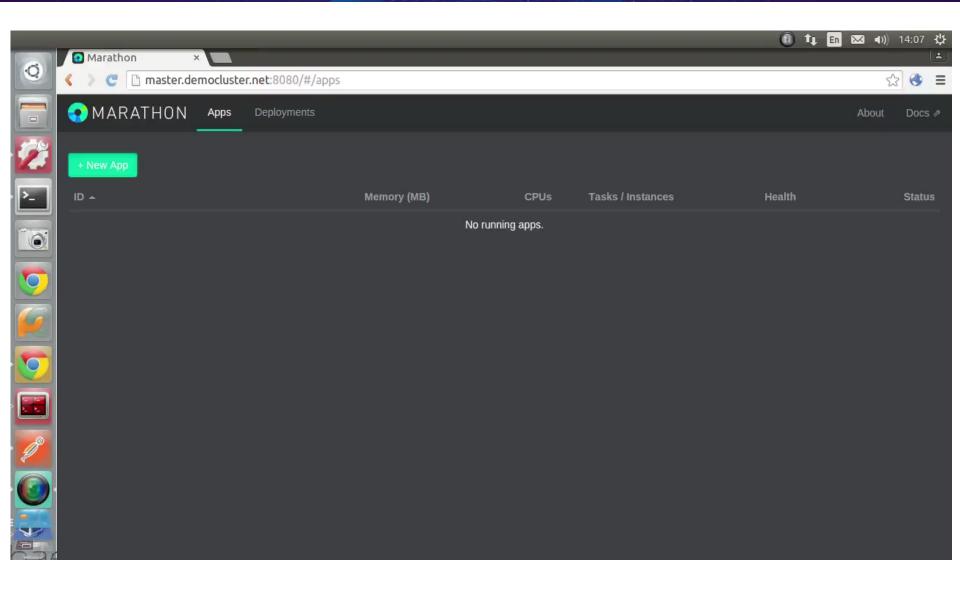


- A receiver does not replicate RDD blocks to new executor during initialization
- E.g., spark.blockmanager.peer.bootstrap = 10s

Demo Environment

- Data source: Kafka
- Auto-scaling parameter
 - $\alpha = 0.4$, $\beta = 0.9$
- SQL query
 - SELECT t.word, COUNT(DISTINCT t.num), SUM(t.num), AVG(t.num), MIN(t.num), MAX(t.num) FROM
 (SELECT * FROM t_kafka) OVER (WINDOW 300 SECONDS, SLIDE 3 SECONDS) AS t GROUP BY t.word





Future Work

Streaming SQL

- Apply Tungsten Framework
 - Small-sized object, code gen, GC free memory management
- Share RDDs
 - Map stream tables to RDD

Auto Scaling

- Support to dynamically allocate resources for batch (non-streaming) applications
- Support unified schedulers for heterogeneous applications
 - Batch, streaming, ad-hoc

THANK YOU!

https://github.com/samsung/spark-cep