
이름 김병진, 권오찬

Extending Spark Streaming to
Support Complex Event
Processing

소속 삼성전자

2015. 10. 27.

Agenda

• Background

• Motivation

• Streaming SQL

• Auto Scaling

• Future Work

Background - Spark

• Apache Spark is a high performance data processing platform

• Use a distributed memory cache (RDD*)

• Process batch and stream data in the common platform

• Be developed by 700+ contributors

3x faster than Storm
(Stream, 30 Nodes)

100x faster than Hadoop
(Batch, 50 Nodes, Clustering Alg.)

*RDD: Resilient Distributed Datasets

Background – Spark RDD

• Resilient Distributed Datasets

• RDDs are immutable

• Transformations are lazy operations which build a RDD’s lineage graph

• E.g.: map, filter, join, union

• Actions launch a computation to return a value or write data

• E.g.: count, collect, reduce, save

• The scheduler builds a DAG of stages to execute

• If a task fails, spark re-runs it on another node as long as its stage’s parent are still

available

Background - Spark Modules

• Spark Streaming

• Divide stream data into micro-batches

• Compute the batches with fault tolerance

• Spark SQL

• Support SQL to handle structured data

• Provide a common way to access a variety of data

sources (Hive, Avro, Parquet, ORC, JSON, and JDBC)

Spark

Spark
Streaming

batches of
X seconds

live data stream

processed
results

DStreams

RDDs

map, reduce, count, …

Motivation – Support CEP in Spark

• Current spark is not enough to support CEP*

• Do not support continuous query language to process stream data

• Do not support auto-scaling to elastically allocate resources

• We have solved the issues:

• Extend Intel’s Streaming SQL package

• Improve performance by optimizing time-based windowed aggregation

• Support query chains by implementing “Insert Into” queries

• Implement elastic-seamless resource allocation

• Can do auto-scale in/out

*Complex Event Processing

Streaming SQL

Streaming SQL - Intel

• Streaming SQL is a third party library of Spark Packages

• Build on top of Spark Streaming and Spark SQL Catalyst

• Manipulate stream data like static structured data in database

• Process queries continuously

• Support time based windowing join/aggregation queries

http://spark-packages.org/package/Intel-bigdata/spark-streamingsql

Streaming
SQL

Streaming
SQL Query

Schema
DStream

Optimized
Logical
Plan

Streaming SQL - Plans

• Logical Plan

• Modify streaming SQL optimizer

• Add windowed aggregate logical plan

• Physical Plan

• Add windowed aggregate physical plan to call new WindowedStateDStream class

• Implement new expression functions (Count, Sum, Average, Min, Max, Distinct)

• Develop FixedSizedAggregator for efficiency which is the concept of IBM InfoSphere Streams

Samsung

Stream
Plan

Intel

Logical
Plan

Physical
Plan

Streaming SQL – Windowed State

• WindowedStateDStream class

• Modify StateDStream class to support windowed computing

• Add inverse update function to evaluate old values

• Add filter function to remove obsolete keys

Intel Samsung

Compute all elements in the window

time 1 time 2 time 3 time 4 time 5

Original
DStream

Windowed
State
DStream

time 1 time 2 time 3 time 4 time 5

Original
DStream

Windowed
DStream

Compute only Delta (old and new elements)

window-based
operation Update (in)

InvUpdate (out)

State: Array[AggregateFunction]

Count

Update
InvUpdate

Update

InvUpdate

State

Sum

Update
InvUpdate

State

Avg

Update
InvUpdate

State

Min

Update
InvUpdate

State

Max

Update
InvUpdate

State

Streaming SQL – Fixed Sized Aggregator

• Fixed-Sized Aggregator* of IBM InfoSphere Streams

• Use fixed sized binary tree

• Maintain leaf nodes as a circular buffer using front and back pointers

• Very efficient for non-invertable expressions (e.g. Min, Max)

• Example - Min Aggregator

4 7 3

4 3

3

4 7 3 2

4 2

2

7 3 2

7 2

2

9 7 3 2

7 2

2

4

4

4

4 7

4

4

*K. Tangwongsan, M. Hirzel, S. Schneider, K-L. Wu, “General incremental sliding-window aggregation,” In VLDB, 2015.

Streaming SQL – Aggregate Functions

• Windowed Aggregate Functions

• Add invUpdate function

• Reduce objects for efficient serialization

• Implement Fixed-Sized Aggregator for Min, Max functions

Aggregate Functions State Update InvUpdate

Count countValue: Long Increase countValue Decrease countValue

Sum sumValue: Any Add to sumValue Subtract to sumValue

Average sumValue: Any
countValue: Long

Increase countValue
Add to sumValue

Decrease countValue
Subtract to sumValue

Min fat: FixedSizedAggregator Insert minimum to fat Remove the oldest from fat

Max fat: FixedSizedAggregator Insert maximum to fat Remove the oldest from fat

CountDistinct distinctMap:
mutable.HashMap[Row, Long]

Increase count of distinct value
in map

Decrease count of distinct value
in map

Streaming SQL – Insert Into

• Support “Insert Into” query

• Implement Data Sources API

• Implement the insert function in Kafka relation

• Modified some physical plans to support streaming

• Modified physical planning strategies to assign a specific plan

• Convert current RDD to a DataFrame and then insert it

• Support query chaining

  The result a query can be reused by multiple queries

Example2

Kafka Kafka

INSERT INTO TABLE
Example1
SELECT duid, time
FROM ParsedTable

INSERT INTO TABLE Example2
SELECT duid, COUNT (*)
FROM Example1
GROUP BY duid Parsed

Table
Example1

Kafka

Kafka Relation InsertIntoStreamSource

StreamExecutedCommand InsertIntoTable

Kafka

Logical Plan Physical Plan

Kafka Relation

DataFrame

Streaming SQL – Evaluation

• Experimental Environment

• Processing Node: Intel i5 2.67GHz, 4 Cores, 4GB per node

Spark Cluster: 7 Nodes

Kafka Cluster: 3 Nodes

• Test Query:

SELECT t.word, COUNT(t.word), SUM(t.num), AVG(t.num), MIN(t.num), MAX(t.num)

FROM (SELECT * FROM t_kafka) OVER (WINDOW 'x' SECONDS, SLIDE ‘1' SECONDS) AS t

GROUP BY t.word

• Default Set:

100 EPS, 100 Keys, 20 sec Window, 1 sec Slide, 10 Executors, 10 Reducers

Spark Cluster

Test
Agent

Kafka Cluster

Spark UI

Streaming SQL – Evaluation

• Test Result

• Show low processing delays despite of heavy event loads or large-sized windows

• Need memory optimization

0

200

400

600

800

1000

1200

1400

20 40 60 80 100

D
el

ay
 (

m
s)

Window Size (sec)

Intel Samsung

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

20 40 60 80 100

M
em

o
ry

 (
K

B
)

Window Size (sec)

Intel Samsung

0

1000

2000

3000

4000

5000

10 100 1000 10000

D
el

ay
 (

m
s)

EPS

Intel Samsung

0

2000

4000

6000

8000

10000

12000

10 100 1000 10000

M
em

o
ry

 (
K

B
)

EPS

Intel Samsung

Auto Scaling

Time-varying Event Rate in Real World

• Spark Streaming

• Data can be ingested from many sources like Kafka, Flume, Twitter, etc.

• Live input data streams are divided into batches, and they are processed

• In streaming application, event rate may change frequently over time

• How can this be dealt with?

< Event Rate > < Batch Processing Time>

High event rate Can’t be processed in real-time

Spark AS-IS

• Spark currently supports dynamic resource allocation on Yarn
(SPARK-3174) and coarse-grained Mesos (SPARK-6287)

• Existing Dynamic Resource Allocation is not optimized for streaming

• Even though event rate becomes smaller, executors may not be removed due to

scheduling policy

• It is difficult to determine appropriate configuration parameters

• Backpressure (SPARK-7398)

• Enable the Spark streaming to control the receiving rate dynamically for handling bursty input

streams

• Not real-time

Driver

Task queue Task

Executor #1

. . .

Executor #2

Executor #n

• Upper/lower bound for the number of executors

• spark.dynamicAllocation.minExecutors

• spark.dynamicAllocation.maxExecutors

• Scale-out condition

• schedulerBacklogTimeout < staying time of a task in task queue

• Scale-in condition

• executorIdleTimeout < staying time of an executor in idle state

• Goal

• Allocate resources to streaming applications dynamically as the rate of incoming events varies
over time

• Enable the applications to meet real-time deadlines
• Utilize the resource efficiently

• Cloud Architecture

Elastic-seamless Resource Allocation

Flint*

*Flint: our spark job manager

 • Spark currently supports three cluster managers

• Standalone, Apache Mesos, Hadoop Yarn

• Spark on Mesos

• Fine-grained mode

• Each Spark task runs as a separate Mesos task.

• Launching overhead is big, so it is not suitable for streaming.

• Coarse-grained mode

• Launch only one long-running Spark task on each Mesos machine

• Cannot scale-out more than the number of Mesos machines

• Cannot control executor resource

• Only available for total resource

• Both of two modes have some problems to achieve our goal

Spark Deployment Architecture

Flint Architecture Overview

Slave 1 Slave 2 Slave n

. . .

MESOS Cluster

Cluster 1
YARN

Cluster n
YARN

. . .

. . .

NM 1

NM 2

. . .
NM n NM 1

NM 2

NM n
. . .

App 1
SPARK

App n
SPARK

EXEC 1

EXEC 2

EXEC n . . . EXEC 1

EXEC 2

EXEC n . . .

FLINT

REST
Manager

Scheduler

Application
Manager

Application
Handler

Application
Handler

Application
Handler

Deploy
Manager

Log
Manager

• Marathon, Zookeeper, ETCD, HDFS

Spark on on-demand Yarn

 • Job submission process

1. Request to deploy dockerized YARN via Marathon

2. Launch ResourceManager, NodeManagers for Spark driver/executors

3. Check ResourceManager status

4. Submit Spark Job and check Job status

5. Watch Spark driver status and get Spark endpoint

Flint Architecture: Job Submission

Slave 1 Slave n

. . .

MESOS Cluster

Slave 1 Slave n

. . .

MESOS Cluster

Cluster
YARN

NM 1

NM 2

. . .
NM n

Slave 1 Slave n

. . .

MESOS Cluster

Cluster
YARN

NM 1

NM 2

. . .
NM n

App
SPARK

EXEC 1

EXEC 2

EXEC n . . .

Create Yarn Cluster

Submit Spark Job

 • Scale-out Process

1. Request to increase the instance of NodeManager via Marathon

2. Launch new NodeManager

3. Scale-out Spark executor

Flint Architecture: Scale-out

Slave 1 Slave n

. . .

MESOS Cluster

Cluster
YARN

NM 1
. . .

NM n

App
SPARK

EXEC 1 EXEC n . . .

Slave 1 Slave n

. . .

MESOS Cluster

Cluster
YARN

NM 1
. . .

NM n

App
SPARK

EXEC 1 EXEC n . . .

NM 2

Slave 1 Slave n

. . .

MESOS Cluster

Cluster
YARN

NM 1
. . .

NM n

NM 2

App
SPARK

EXEC 1 EXEC n . . .

EXEC 2

Request new NodeManager Scale-out Spark executor

 • Scale-in Process

1. Get Executor’s info and select spark victims

2. Inactivate spark victims and kill them after n x batch interval

3. Get Yarn victims and decommission NodeManager via ResourceManager

4. Get mesos task id of Yarn victims and kill mesos tasks of victims

Flint Architecture: Scale-in

Slave 1 Slave n

. . .

MESOS Cluster

Cluster
YARN

NM 1
. . .

NM n

NM 2

App
SPARK

EXEC 1 EXEC n . . .

EXEC 2

Slave 1 Slave n

. . .

MESOS Cluster

Cluster
YARN

NM 1
. . .

NM n

NM 2

App
SPARK

EXEC 1 EXEC n . . .

Slave 1 Slave n

. . .

MESOS Cluster

Cluster
YARN

NM 1
. . .

NM n

NM 2

App
SPARK

EXEC 1 EXEC n . . .

Scale-in Spark executor Remove NodeManager

 • Auto-scaling Mechanism

• Real-time constraint

• Batch processing time < Batch interval

• Scale-out condition

• α x batch interval < batch processing delay

• Scale-in condition

• β x batch interval > batch processing delay

Flint Architecture: Auto-scaling

(0 < β < α ≤ 1)

Processing Time

Batch Interval

α x Batch Interval β x Batch Interval

Scale-in Scale-out

0 Time

 • Timeout & Retry for Killed Executor

• Although Spark executor is killed by admin, Spark re-tries to connect it.

Spark Issues: Scale-in (1/3)

Scale-in

Scheduling Delay

Event Rate

Processing Delay

Driver Exec*

scale-in

Exec Task

RDD req

1st try

2nd try

3rd try

fail

Processing
Delay

• spark.shuffle.io.maxRetries = 3
• spark.shuffle.io.retryWait = 5s

 • Timeout & Retry for Killed Executor

• Advertisement for killed executor

• Inactivate executor before scale-in

• Inactivate executor and kill them after n x batch interval

• During inactivating stage, the executor does not receive any task from driver.

Spark Issues: Scale-in (2/3)

Driver Exec*

scale-in

Exec Task

RDD req

fail

advertise

Fast
Fail

 • Data Locality

• Spark scheduler consider data locality

• Processing/Node/Rack locality

• spark.locality.wait = 3s

• However, waiting time for locality is big burden to streaming applications

• The waiting time should be much less than batch interval for streaming

• Otherwise, streaming may not be processed in real-time

• Thus, Flint overrides “spark.locality.wait” to very small value if application type is streaming

Spark Issues: Scale-in (3/3)

Scheduler Cluster

T T T T

…

3s10ms
(max)

rsc alloc

T

 • Data Localization

• During scale-out process, new Yarn container performs to localize some data

(e.g. spark jar, application jar)

• Data localization incurs high disk I/O, so

• Solution

• Prefetch if possible

• Disk isolation, SSD

Spark Issues: Scale-out (1/2)

Existing
App

New
App

Disk

Access disk during localization
(50-70 MB/sec)

Performance
Degradation

• RDD Replication

• When a new executor is added, a receiver requests to replicate received RDD blocks to the

executor

• New executor does not ready to receive RDD blocks during an initialization

• At this situation, the receiver waits until new executor is ready

• Solution

• A receiver does not replicate RDD blocks to new executor during initialization

• E.g., spark.blockmanager.peer.bootstrap = 10s

Spark Issues: Scale-out (2/2)

Kafka

R

RT

R R

Executor R

R

T

R

Executor 1

R

T

R

Executor 2

RT

T

Receiver Task

Task

R RDD Replicate factor = 2

• Demo Environment

• Data source: Kafka

• Auto-scaling parameter

• α=0.4, β=0.9

• SQL query

• SELECT t.word, COUNT(DISTINCT t.num), SUM(t.num), AVG(t.num), MIN(t.num), MAX(t.num) FROM

(SELECT * FROM t_kafka) OVER (WINDOW 300 SECONDS, SLIDE 3 SECONDS) AS t GROUP BY t.word

Demo (1/2)

Task

Task

Producer

Rcvr

8 3 4 2

5 7 9 1

0 3 7 8

Task Driver

0: 23
1: 34
2: 41
…

Flint

M
o
n
it
o
ri
n
g
 S

ca
le

-in
/O

u
t

Demo (2/2)

Future Work

• Streaming SQL

• Apply Tungsten Framework

• Small-sized object, code gen, GC free memory management

• Share RDDs

• Map stream tables to RDD

• Auto Scaling

• Support to dynamically allocate resources for batch (non-streaming) applications

• Support unified schedulers for heterogeneous applications

• Batch, streaming, ad-hoc

THANK YOU!

https://github.com/samsung/spark-cep

