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Background - Spark 

• Apache Spark is a high performance data processing platform 

• Use a distributed memory cache (RDD*) 

• Process batch and stream data in the common platform 

• Be developed by 700+ contributors 

 

3x faster than Storm 
(Stream, 30 Nodes) 

100x faster than Hadoop 
(Batch, 50 Nodes, Clustering Alg.) 

*RDD: Resilient Distributed Datasets  



 

Background – Spark RDD 

• Resilient Distributed Datasets 

• RDDs are immutable 

• Transformations are lazy operations which build a RDD’s lineage graph 

• E.g.:  map, filter, join, union 

• Actions launch a computation to return a value or write data 

• E.g.: count, collect, reduce, save 

• The scheduler builds a DAG of stages to execute 

• If a task fails, spark re-runs it on another node as long as its stage’s parent are still 

available 

 

 



 

Background - Spark Modules 

• Spark Streaming  

• Divide stream data into micro-batches 

• Compute the batches with fault tolerance 
 

• Spark SQL 

• Support SQL to handle structured data 

• Provide a common way to access a variety of data 

sources (Hive, Avro, Parquet, ORC, JSON, and JDBC) 
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Motivation – Support CEP in Spark 

• Current spark is not enough to support CEP* 

• Do not support continuous query language to process stream data 

• Do not support auto-scaling to elastically allocate resources 

 

• We have solved the issues: 

• Extend Intel’s Streaming SQL package 

• Improve performance by optimizing time-based windowed aggregation 

• Support query chains by implementing “Insert Into” queries  

• Implement elastic-seamless resource allocation 

• Can do auto-scale in/out 

 

 

 

*Complex Event Processing 



 

 

 

Streaming SQL 

 



 

Streaming SQL - Intel 

• Streaming SQL is a third party library of Spark Packages 

• Build on top of Spark Streaming and Spark SQL Catalyst 

• Manipulate stream data like static structured data in database 

• Process queries continuously 

• Support time based windowing join/aggregation queries 

http://spark-packages.org/package/Intel-bigdata/spark-streamingsql 

Streaming  
SQL 
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Streaming SQL - Plans 

• Logical Plan 

• Modify streaming SQL optimizer 

• Add windowed aggregate logical plan 
 

• Physical Plan 

• Add windowed aggregate physical plan to call new WindowedStateDStream class 

• Implement new expression functions (Count, Sum, Average, Min, Max, Distinct) 

• Develop FixedSizedAggregator for efficiency which is the concept of IBM InfoSphere Streams 
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Streaming SQL – Windowed State 

• WindowedStateDStream class 

• Modify StateDStream class to support windowed computing 

• Add inverse update function to evaluate old values 

• Add filter function to remove obsolete keys 

Intel Samsung 

Compute all elements in the window 
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DStream 
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State: Array[AggregateFunction] 
 

Count 
 
 

Update 
InvUpdate 

 
 

Update 
 

InvUpdate 
 

State 

Sum 
 
 

Update 
InvUpdate 

 
 

State 

Avg 
 
 

Update 
InvUpdate 

 
 

State 

Min 
 
 

Update 
InvUpdate 

 
 

State 

Max 
 
 

Update 
InvUpdate 

 
 

State 



 

Streaming SQL – Fixed Sized Aggregator 

• Fixed-Sized Aggregator* of IBM InfoSphere Streams 

• Use fixed sized binary tree 

• Maintain leaf nodes as a circular buffer using front and back pointers  

• Very efficient for non-invertable expressions (e.g. Min, Max) 

 

• Example - Min Aggregator 
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*K. Tangwongsan, M. Hirzel, S. Schneider, K-L. Wu, “General incremental sliding-window aggregation,” In VLDB, 2015. 



 

Streaming SQL – Aggregate Functions 

• Windowed Aggregate Functions 

• Add invUpdate function 

• Reduce objects for efficient serialization 

• Implement Fixed-Sized Aggregator for Min, Max functions  

Aggregate Functions State Update InvUpdate 

Count countValue: Long Increase countValue Decrease countValue 

Sum sumValue: Any Add to sumValue Subtract to sumValue 

Average sumValue: Any 
countValue: Long 

Increase countValue 
Add to sumValue 
 

Decrease countValue 
Subtract to sumValue 

Min fat: FixedSizedAggregator Insert minimum to fat Remove the oldest from fat 

Max fat: FixedSizedAggregator Insert maximum to fat Remove the oldest from fat 

CountDistinct distinctMap:  
mutable.HashMap[Row, Long] 

Increase count of distinct value 
in map 

Decrease count of distinct value 
in map 



 

Streaming SQL – Insert Into 

• Support “Insert Into” query 

• Implement Data Sources API 

• Implement the insert function in Kafka relation 

• Modified some physical plans to support streaming 

• Modified physical planning strategies to assign a specific plan  

• Convert current RDD to a DataFrame and then insert it 

• Support query chaining 

  The result a query can be reused by multiple queries  

 

Example2 

Kafka Kafka 

INSERT INTO TABLE 
Example1 
SELECT duid, time 
FROM ParsedTable 

INSERT INTO TABLE Example2 
SELECT duid, COUNT (*) 
FROM Example1 
GROUP BY duid Parsed 

Table 
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Kafka 

Kafka Relation InsertIntoStreamSource 

StreamExecutedCommand InsertIntoTable 
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Streaming SQL – Evaluation 

• Experimental Environment 

• Processing Node: Intel i5 2.67GHz, 4 Cores, 4GB per node  

Spark Cluster:  7 Nodes  

Kafka Cluster: 3 Nodes  
 

• Test Query:  

SELECT t.word, COUNT(t.word), SUM(t.num), AVG(t.num), MIN(t.num), MAX(t.num) 

FROM (SELECT * FROM t_kafka) OVER (WINDOW 'x' SECONDS, SLIDE ‘1' SECONDS) AS t 

GROUP BY t.word 
 

• Default Set: 

100 EPS, 100 Keys, 20 sec Window, 1 sec Slide, 10 Executors, 10 Reducers 
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Streaming SQL – Evaluation 

• Test Result  

• Show low processing delays despite of heavy event loads or large-sized windows 

• Need memory optimization  
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Auto Scaling 

 



  

Time-varying Event Rate in Real World 

• Spark Streaming  

• Data can be ingested from many sources like Kafka, Flume, Twitter, etc. 

• Live input data streams are divided into batches, and they are processed 

 

 

 
 

• In streaming application, event rate may change frequently over time 

• How can this be dealt with? 

< Event Rate > < Batch Processing Time> 

High event rate Can’t be processed in real-time 



  

Spark AS-IS 

• Spark currently supports dynamic resource allocation on Yarn  
(SPARK-3174) and coarse-grained Mesos (SPARK-6287) 

 
 
 
 
 
 
 
 
 

• Existing Dynamic Resource Allocation is not optimized for streaming 

• Even though event rate becomes smaller, executors may not be removed due to 

scheduling policy 

• It is difficult to determine appropriate configuration parameters 

• Backpressure (SPARK-7398) 

• Enable the Spark streaming to control the receiving rate dynamically for handling bursty input 

streams 

• Not real-time 

Driver 

Task queue Task 

Executor #1 

. . .  

Executor #2 

Executor #n 

• Upper/lower bound for the number of executors 

• spark.dynamicAllocation.minExecutors 

• spark.dynamicAllocation.maxExecutors 

• Scale-out condition 

• schedulerBacklogTimeout < staying time of a task in task queue 

• Scale-in condition 

• executorIdleTimeout < staying time of an executor in idle state 

 
 



 
• Goal 

• Allocate resources to streaming applications dynamically as the rate of incoming events varies 
over time 

• Enable the applications to meet real-time deadlines 
• Utilize the resource efficiently 

 
 

• Cloud Architecture 
 

 
 

 
 

 

Elastic-seamless Resource Allocation 

Flint* 

*Flint: our spark job manager 



 • Spark currently supports three cluster managers 

• Standalone, Apache Mesos, Hadoop Yarn 

 

• Spark on Mesos 

• Fine-grained mode 

• Each Spark task runs as a separate Mesos task. 

• Launching overhead is big, so it is not suitable for streaming.  

• Coarse-grained mode 

• Launch only one long-running Spark task on each Mesos machine 

• Cannot scale-out more than the number of Mesos machines 

• Cannot control executor resource 

• Only available for total resource 

• Both of two modes have some problems to achieve our goal 

Spark Deployment Architecture 



 

Flint Architecture Overview 

Slave 1 Slave 2 Slave n 

. . . 

MESOS Cluster 

Cluster 1 
YARN 

Cluster n 
YARN 

. . . 

. . . 

NM 1 

NM 2 

. . . 
NM n NM 1 

NM 2 

NM n 
. . . 

App 1 
SPARK 

App n 
SPARK 

EXEC 1 

EXEC 2 

EXEC n . . . EXEC 1 

EXEC 2 

EXEC n . . . 

FLINT 

REST 
Manager 

Scheduler 

Application 
Manager 

Application  
Handler 

Application  
Handler 

Application  
Handler 

Deploy 
Manager 

Log 
Manager 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Marathon, Zookeeper, ETCD, HDFS 

Spark on on-demand Yarn 



 • Job submission process 

1. Request to deploy dockerized YARN via Marathon 

2. Launch ResourceManager, NodeManagers for Spark driver/executors 

3. Check ResourceManager status  

4. Submit Spark Job  and check Job status 

5. Watch Spark driver status and get Spark endpoint 

Flint Architecture: Job Submission 
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 • Scale-out Process 

1. Request to increase the instance of NodeManager via Marathon 

2. Launch new NodeManager 

3. Scale-out Spark executor 

 

Flint Architecture: Scale-out 
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 • Scale-in Process 

1. Get Executor’s info and select spark victims 

2. Inactivate spark victims and kill them after n x batch interval 

3. Get Yarn victims and decommission NodeManager via ResourceManager 

4. Get mesos task id of Yarn victims and kill mesos tasks of victims 

Flint Architecture: Scale-in 

Slave 1 Slave n 

. . . 

MESOS Cluster 

Cluster 
YARN 

NM 1 
. . . 

NM n 

NM 2 

App 
SPARK 

EXEC 1 EXEC n . . . 

EXEC 2 

Slave 1 Slave n 

. . . 

MESOS Cluster 

Cluster 
YARN 

NM 1 
. . . 

NM n 

NM 2 

App 
SPARK 

EXEC 1 EXEC n . . . 

Slave 1 Slave n 

. . . 

MESOS Cluster 

Cluster 
YARN 

NM 1 
. . . 

NM n 

NM 2 

App 
SPARK 

EXEC 1 EXEC n . . . 

Scale-in Spark executor Remove NodeManager 



 • Auto-scaling Mechanism 

• Real-time constraint 

• Batch processing time < Batch interval 

 

 

 

• Scale-out condition 

• α x batch interval < batch processing delay 

• Scale-in condition 

• β x batch interval > batch processing delay 

 

 
 

 

Flint Architecture: Auto-scaling  

( 0 < β < α ≤ 1 ) 
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 • Timeout & Retry for Killed Executor 

• Although Spark executor is killed by admin, Spark re-tries to connect it. 

Spark Issues: Scale-in (1/3) 
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• spark.shuffle.io.maxRetries = 3 
• spark.shuffle.io.retryWait = 5s 

 
 



 • Timeout & Retry for Killed Executor 

• Advertisement for killed executor 

 

 

 

 

 

 

 

• Inactivate executor before scale-in 

• Inactivate executor and kill them after n x batch interval 

• During inactivating stage, the executor does not receive any task from driver. 

Spark Issues: Scale-in (2/3) 

Driver Exec* 

scale-in 

Exec Task 

RDD req 

fail 

advertise 

Fast 
Fail 



 • Data Locality 

• Spark scheduler consider data locality 

• Processing/Node/Rack locality 

• spark.locality.wait = 3s 

 

• However, waiting time for locality is big burden to streaming applications 

• The waiting time should be much less than batch interval for streaming 

• Otherwise, streaming may not be processed in real-time 

 

• Thus, Flint overrides “spark.locality.wait” to very small value if application type is streaming 

Spark Issues: Scale-in (3/3) 
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 • Data Localization 

• During scale-out process, new Yarn container performs to localize some data  

(e.g. spark jar, application jar) 

• Data localization incurs high disk I/O, so  

 
 
 
 

 
 

 
 

• Solution 

• Prefetch if possible 

• Disk isolation, SSD 

 

Spark Issues: Scale-out (1/2) 
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• RDD Replication 

• When a new executor is added, a receiver requests to replicate received RDD blocks to the 

executor 

• New executor does not ready to receive RDD blocks during an initialization 

• At this situation, the receiver waits until new executor is ready 

 

 

 

 

 

 

 

 

 

• Solution 

• A receiver does not replicate RDD blocks to new executor during initialization 

• E.g., spark.blockmanager.peer.bootstrap = 10s 

 
 
 

 

Spark Issues: Scale-out (2/2) 
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• Demo Environment 

• Data source: Kafka 

• Auto-scaling parameter 

• α=0.4, β=0.9 

• SQL query 

• SELECT t.word, COUNT(DISTINCT t.num), SUM(t.num), AVG(t.num), MIN(t.num), MAX(t.num) FROM 

(SELECT * FROM t_kafka) OVER (WINDOW 300 SECONDS, SLIDE 3 SECONDS) AS t GROUP BY t.word 

Demo (1/2) 
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Demo (2/2) 



 

Future Work 

• Streaming SQL 

• Apply Tungsten Framework 

• Small-sized object, code gen, GC free memory management 

• Share RDDs 

• Map stream tables to RDD 

 

• Auto Scaling 

• Support to dynamically allocate resources for batch (non-streaming) applications 

• Support unified schedulers for heterogeneous applications 

• Batch, streaming, ad-hoc 



THANK YOU! 
 

https://github.com/samsung/spark-cep 


